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Abstract. The analytic continuation by symmetry with respect to the unit
circle of infinite Blaschke products is studied and invariants of the restriction
to some parts of the unit circle of these extended functions are obtained. Then
analytic extensions of the respective invariants are constructed. The analogous
results for infinite Blaschke products on the real projective plan are stated.
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1. EXTENSIONS OF INFINITE BLASCHKE PRODUCTS

Let (an) be a Blaschke sequence, i.e. a sequence of complex numbers such
that |an| < 1 for every n and

∑∞
n=1(1− |an|) < ∞. A Blaschke factor is a

Möbius transformation of the form:

(1) b(z, an) =
an

|an|
an − z

1− anz

and an infinite Blaschke product is an expression of the form:

(2) B(z) =
∞∏

n=1

b(z, an).

It is known that for every Blaschke sequence (an) the corresponding
Blaschke product converges uniformly on compact subsets of the open unit
disk. This means that the sequence (Bn) of finite partial Blaschke products

(3) Bn(z) =
n∏

k=1

b(z, ak)

converges uniformly on compact subsets of the open unit disk D and B(z) =
limn→∞ Bn(z), z ∈ D. As every partial product Bn(z) is a meromorphic
function in C, the question arises whether B could be extended outside D.
A result due to Tanaka (see [6]) gives a partial answer to this question.

Theorem 1. (Tanaka) The following conditions are equivalent:
(a) :

∑∞
n=1

1−|an|
|eiθ−an| < ∞.
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(b) :
∑∞

n=1 |eiθ − an| < ∞.

(c) : B converges absolutely at eiθ.

Moreover, if these conditions are fulfilled, then:

(4) lim
r→1−

B(reiθ) = B(eiθ).

In other words, Tanaka’s theorem says that B can be extended by (4) at all
the points eiθ ∈ ∂D verifying the equivalent relation (a), (b), (c). We’ll use
this result in order to prove that, under some supplementary conditions on
(an), much more can be said about the convergence of the sequence (Bn).

Let us notice first that if eiθ is not a cluster point of (an) then there is
δ > 0 such that |eiθ − an| ≥ δ, n = 1, 2, . . . . Consequently:

(5)
∞∑

n=1

1− |an|
|eiθ − an|

≤ 1
δ

∞∑
n=1

(1− |an|) < ∞,

i.e., the condition (a) of Tanaka’s theorem is fulfilled, and therefore B
converges absolutely at eiθ.

Suppose now that eiθ0 is not a cluster point of (an). Then, by a simple
topological argument, there is an interval (α, β) such that θ0 ∈ (α, β) and
every θ ∈ [α, β] is not a cluster point of (an). Consequently, B converges
absolutely at every point of the arc Γ = {z = eiθ : θ ∈ [α, β]}. Moreover, if
θ, θ′ ∈ [α, β] and r < 1, the inequality

|B(eiθ)−B(eiθ′)| ≤ |B(eiθ)−B(reiθ)|+ |B(reiθ)−Bn(reiθ)|+

+ |Bn(reiθ)−Bn(reiθ′)|+ |Bn(reiθ′)−B(reiθ′)|+ |B(reiθ′)−B(eiθ′)|
(6)

shows that for |eiθ − eiθ′ | small enough, the left hand side can be made as
small as we want. Indeed, then we can choose n big enough and 1− r small
enough such that every term on the right hand side is as small as we want.
This shows that the function B extended to Γ by the limit (4) is continuous
on Γ.

The following is a slightly different form of Theorem 6.1, page 75, from [8].
Instead of Poisson integral formula, we are using as argument Theorem 1 and
the direct analytic continuation theorem.

Theorem 2. If the set E of cluster points of (an) does not coincide with
the whole unit circle ∂D, then the Blaschke product B can be extended by
symmetry across the unit circle to a meromorphic function in C −E, having
as poles the points 1/an.

Proof. Let us define B∞(z) for every z ∈ C, |z| > 1, by the formula:
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(7) B∞(z) =
1

B(1/z)
, if z 6= 1/an and B∞(1/an) = ∞

and notice that since for every n, Bn(z) = 1

Bn(1/z)
, z ∈ C, we have that

B∞(z) = limn→∞ Bn(z), |z| > 1. Obviously, B∞ is a meromorphic function
for |z| > 1, having poles exactly at 1/an. Moreover, if z0 = eiθ0 /∈ E we have
1/z0 = z0. Let us define B∞(z0) as 1/B(z0) and notice that B∞(z0) =
1/ limn→∞ Bn(z0) = 1/B(z0), in other words, B∞(z0) = 1/B(z0) = B(z0).
We see that the conditions of direct analytic continuation theorem across an
arc Γ � z0 of the unit circle (see [9], p. 183) are fulfilled. Such an arc Γ always
exists, since E is a closed subset of the unit circle and therefore ∂D − E is
open in the trace topology of ∂D. Consequently, B and B∞ are restrictions
of a unique meromorphic function, which is analytic in a neighborhood of
z0. We use the same notation B for this extended function and we have
that B(z) = limn→∞ Bn(z) for every z ∈ C − E, and the convergence
is uniform on compact subset of the compliment of E ∪ {1/an : n = 1, 2, . . .}
On the other hand there is no hope for a reasonable definition of B at the
points of E, since if eiθ ∈ E, then there is a subsequence (ank

) such
that limk→∞ ank

= limk→∞ 1/ank
= eiθ and B(ank

) = 0, B(1/ank
) = ∞,

therefore limz→eiθ B(z) does not exist.
The domain of B is a symmetric domain with respect to the unit circle

and the function B is a symmetric function with respect to that circle in the
sense that:

(8) B(z) =
1

B(1
z )

, z ∈ C − E.

In other words, B has been extended, by using the symmetry principle, to
C − E. �

The function B∞ can always be defined in terms of an infinite Blaschke
product B, but if E = ∂D, B∞ is not a direct continuation of B and we
cannot talk about B as a meromorphic function in ∂D−E. Examples where
E = ∂D are cited in literature (see [7]), although unknown directly to us.
We were therefore tempted to construct one. Let

(9) an,k = (1− 1/3n)ei kπ
2n−1 , n = 1, 2, . . . , k = 1, 2, . . . , 2n.

It can be easily checked that:

(10)
∞∑

n=1

2n∑
k=1

(1− |an,k|) =
∞∑

n=1

2n

3n
= 2,
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therefore (an,k) is a Blaschke sequence and the corresponding Blaschke prod-
uct

(11)
∞∏

n=1

2n∏
k=1

b(z, an,k)

converges uniformly on compact subsets of the open unit disc. On the other
hand, every point θ of the interval [0, 2π] is a cluster point of the sequence

(12)
(

kπ

2n−1

)
, n = 1, 2, . . . , k = 1, 2, . . . , 2n

and, as limn→∞(1 − 1
3n ) = 1, every point eiθ on the unit circle is a cluster

point of (an,k), therefore E = ∂D.

2. INVARIANTS OF INFINITE BLASCHKE PRODUCTS

It is known (see [5]) that any finite Blaschke product Bn of degree n
defines a n − to − one self mapping of ∂D and the set G of continuous
functions U : ∂D → ∂D such that Bn ◦ U = Bn on ∂D is a cyclic group
of order n with respect to composition. The question arises whether similar
properties of infinite Blaschke products exist. We expect the answer to this
question to depend on the Blaschke sequence (an) and therefore we start with
the simplest situation, namely when an = rneiθ. There is no loss of generality
supposing θ = 0, i.e., 0 ≤ an < 1 and

∑∞
n=1(1 − an) < ∞. Particularly,

limn→∞ an = 1. Then, with Bn(z) given by (3), we have

(13) B(z) = lim
n→∞

Bn(z), z 6= 1

and we know that B(z) is a meromorphic function in C − {1}, having the
poles exactly at 1

an
= 1

an
.

In order to describe the way Bn maps n − to − one ∂D on itself, we
need to solve an equation of the form Bn(z) = 1, which is (since here
ak = ak = |ak|):

(14)
n∏

k=1

ak − z

1− ak z
= 1.

It is obvious that z = −1 is always a solution of the equation (14) and if n
is even, then z = 1 is also a solution of (14). Moreover, if Bn(z0) = 1, then
Bn(z0) = 1.

We also can see that the equation (14) cannot have multiple solutions,
since

B′
n(eiθ) = Bn(eiθ)

n∑
k=1

a2
k − 1

(ak − eiθ)(1− akeiθ)

= e−iθBn(eiθ)
n∑

k=1

1− a2
k

|1− akeiθ|
6= 0.

(15)
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Consequently, for every n, there is a partition: 0 = θ
(n)
0 < θ

(n)
1 < · · · < θ

(n)
bn

2
c ≤

π such that Bn maps every arc Γk = {z = ei(π−θ) : θ
(n)
k−1 ≤ θ < θ

(n)
k },

1 ≤ k ≤ bn
2 c continuously and injectively on ∂D. The same is true for every

arc Γ−k+1 = {z = ei(π+θ) : θ
(n)
k−1 < θ ≤ θ

(n)
k }, 1 ≤ k ≤ bn

2 c. When n = 2m,

then bn
2 c = m and θ

(n)
m = π. When n = 2m + 1, then besides the arcs Γk

and Γ−k+1, 1 ≤ k ≤ m, there is also the arc Γm+1 = {z = eiθ : −π + θ
(n)
m <

θ ≤ π − θ
(n)
m } which is mapped by Bn continuously and injectively on ∂D.

Due to the continuity of Bn on the unit circle, there is a continuous passage
from every mapping to the next one, with the convention that Γ−bn

2
+1c is next

to Γbn
2
c.

Let us write the equality (13) under the form:

(13′) B(z) = Bn(z)[1 + Rn(z)], where lim
n→∞

Rn(z) = 0, z 6= 1.

This shows that, if n is big enough, n of the roots of the equation B(z) = 1
will be slight perturbations of the roots of the equation Bn(z) = 1. Moreover,
we can describe also the position of the remaining roots. Indeed, let’s solve
the equation Bn+1(z) = 1. We notice first that

(16) Bn+1(z) = Bn(z)
an+1 − z

1− an+1z
= Bn(z)

[
1 +

(1− an+1)(1− z)
1− an+1z

]
,

where, due to the convergence of
∑∞

n=0(1− an+1), we have that∣∣∣∣(1− an+1)(1− z)
1− an+1z

∣∣∣∣ = o

(
1
n

)
,

as n → ∞. Again we can state that if n is big enough, the roots of the
equation Bn+1(z) = 1 will be slight perturbations of the roots of the equation
Bn(z) = 1, to which a new root is added. This last one should be zn+1 = 1,
if n is odd, or the complex conjugate of the perturbation of the root zn = 1
of the equation Bn(z) = 1, if n is even. This analysis suggest that the roots
of (ζn) of the equation B(z) = 1 cannot accumulate to any point where B(z)
is analytic. Let us prove rigorously this affirmation. Suppose that ζ0 is such
a point and let ζnk

be such that B(ζnk
) = 1 and limk→∞ ζnk

= ζ0. Then, due
to the continuity of B(ζ) at ζ0, we have B(ζ0) = 1 and consequently

B′(ζ0) = lim
k→∞

B(ζnk
)−B(ζ0)

ζnk
− ζ0

= 0,

which contradicts the relation (15). Therefore we can state the following
Theorem 3.

Theorem 3. Every Blaschke sequence of non-negative real numbers (an)
determines a sequence 0 = θ0 < θ1 < θ2 < · · · < π, limn→∞ θn = π such
that the corresponding Blaschke product maps continuously and injectively each



144 T. Cao-Huu and D. Ghisa 6

one of the arcs Γn = {z = ei(π−θ) : θn−1 ≤ θ < θn}, as well as Γ−n+1 =
{z = ei(π+θ) : θn−1 < θ ≤ θn} , n = 1, 2, . . . on the unit circle. There is a
continuous passage from every mapping to the next one in the sequence (Γn),
n = · · · − 1, 0, 1, . . .

Now, let us remove the condition on an to be real and compare the Blaschke
products Bn(z) =

∏n
k=1 b(z, ak) and Cn(z) =

∏n
k=1 b(z, |ak|). Suppose

that eiα1 , eiα2 , . . . , eiαn are the roots of the equation Bn(z) = 1 and that
eiβ1 , eiβ2 , . . . , eiβn are the roots of the equation Cn(z) = 1. We only need to
compare the last roots of the equations Bn+1(z) = 1 and Cn+1(z) = 1,
since the others are slight perturbations of the former ones. This comes to
evaluating the difference

b(z, an+1)− b(z, |an+1|) =
an+1

|an+1|
an+1 − z

1− an+1z
− |an+1| − z

1− |an+1|z

=
1

|an+1|

(
an+1 − z

1
an+1

− z
− |an+1| − z

1
|an+1| − z

)

=
1

|an+1|
( |an+1| − 1

|an+1| − an+1 + 1
an+1

) z

( 1
an+1

− z)( 1
|an+1| − z)

.

(17)

From this last expression it can be easily seen that |b(z, an+1)− b(z, |an+1|) =
o( 1

n), as n → ∞. This implies that multiplying Bn(z) by b(z, an+1) has
similar effect on the roots of the equation Bn(z) = 1, as the (already known)
effect of multiplying Cn(z, |an+1|) by b(z, |an+1|). Consequently, the Theorem
2.1 can be expressed in a more general setting, as follows:

Theorem 4. Suppose that the Blaschke sequence (an) converges to eiθ0.
Then there are infinitely many arcs Γn = {z = eiθ : θ0 +αn−1 ≤ θ < θ0 +αn},
n ∈ Z,α−n = −αn, 0 = α0 < α1 < . . . , limn→∞ αn = π, which are mapped
by the corresponding Blaschke product continuously and injectively on the unit
circle. There is a continuous passage from every one of these mappings to the
next one.

We can now use the technique of [5] in order to prove the following theorem:

Theorem 5. If the Blaschke sequence (an) has a unique cluster point,
then the set of continuous functions U : ∂D → ∂D such that B ◦U = B on
∂D is an infinite cyclic group G with respect to the composition.

Proof. Let us define as in [5] Ψn : ∂D → Γn such that B(Ψn(eiθ)) = eiθ,
n ∈ Z and let Un : ∂D → ∂D be defined as follows:

(18) Un|Γj = Ψn+j ◦Ψ−1
j .
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Then B ◦ Un|Γj (e
iθ) = B(Ψn+j(Ψ−1

j (eiθ))) = Ψ−1
j (eiθ) = B(eiθ), for every

j ∈ Z, therefore B ◦ Un = B on ∂D, in other words Un is an invariant of
B. We need to show that the transformations Un of ∂D form a cyclic group
under composition. Indeed, U0 is the identity and for any m, n, j ∈ Z, we
have that Um+n maps Γj on Γm+n+j . The same mapping can be obtained
if we send Γj to Γn+j by Un and then send Γn+j to Γm+n+j by Um. In
other words Um+n = Um ◦Un. We skip the details, which are elementary. Let
us denote by G the group generated in this way. It remains to show that G
contains all continuous mappings V of ∂D on itself such that B ◦ V = B.

We will use a similar argument to that employed in [5] in the finite case.
Let us first notice that if B(eiθ) = B(eiθ′), then there is an n unique such
that eiθ′ = Un(eiθ). Indeed, if eiθ ∈ Γj and eiθ′ ∈ Γm, then ζ and ζ ′ are
uniquely determined, such that eiθ = Ψj(ζ) and eiθ′ = Ψm(ζ ′), therefore
ζ = B(Ψj(ζ)) = B(eiθ) = B(eiθ′) = B(Ψm(ζ ′)) = ζ ′ and consequently eiθ′ =
Ψm(ζ ′) = Ψm(ζ) = Ψm(Ψ−1

j (eiθ)) = Um−j(eiθ), i.e., n = m− j.
Now suppose that V : ∂D → ∂D is a continuous map such that B◦V = B

and let us denote Fj = {ξ ∈ ∂D : V (ξ) = Uj(ξ)} for every j ∈ Z. Due to the
continuity of the functions involved, Fj are all closed subsets of ∂D. Since
B(V (ξ)) = B(ξ), by the previous remark, there is j such that V (ξ) = Uj(ξ),
therefore at least one of the sets Fj is not empty. Then, a connectedness
argument implies that all the other sets Fk , k 6= j are empty and Fj = ∂D,
i.e. V (ξ) = Uj(ξ) for every ξ ∈ ∂D, in other words V = Uj . This proves
completely the theorem. �

3. THE CASE OF MULTIPLE CLUSTER POINTS OF THE SEQUENCE

Suppose that the sequence (an) has several cluster points forming a discrete
set ω1, ω2, · · · ∈ ∂D. Then, an analysis similar to that in the previous section
allows us to state the following conjecture. Between every two adjacent cluster
points ωk and ωk+1 there are infinitely many arcs Γ(k)

n , n ∈ Z accumulating
exactly to ωk when n → −∞ and ωk+1, when n → +∞, such that B

represents every arc Γ(k)
n continuously and injectively on ∂D. There is a

continuous passage from the mapping of Γ(k)
n to that of Γ(k)

n+1 for every

n ∈ Z. Functions Ψ(k)
n : ∂D → Γ(k)

n can be defined as previously and also
U

(k)
n : ∂D → ∂D by

(18′) U (k)
n |

Γ
(m)
j

= Ψ(k)
n+j ◦ [Ψ(m)

j ]−1, m ∈ Z.

The functions U
(k)
n form a group of invariants of B and for every k, any

U
(k)
n generate an infinite cyclic subgroup of G.
A similar construction is conceivable in an even more general situation,

namely when the cluster points of the Blaschke product form a Cantor set on
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∂D. Then the “removed” arcs will take the place of the arcs between ωk and
ωk+1.

4. ANALYTIC CONTINUATION OF THE FUNCTIONS UN

It is known (see [5]) that for a finite Blaschke product the functions Un can
be extended analytically to an open annulus symmetric with respect to ∂D.
We can prove a similar result for infinite Blaschke products:

Theorem 6. Let K be a compact subset of ∂D − E. Then, there is an
open neighborhood V of K (in C) such that every function Un can be
extended analytically to V. The extended functions still verify the equation
B ◦ Un = B.

Proof. As shown in Theorem 2, the function B is analytic in C −E ∪A,
where A = { 1

an
: n = 1, 2, . . . }. For every z ∈ C − E ∪ A, the derivative of

B is:

(19) B′(z) = −B(z)
∞∑

n=1

1− |an|2

(an − z)(1− an z)
.

If ζ = eiθ ∈ ∂D−E, then (an−ζ)(1−anζ) = −ζ(an−ζ)(an−ζ) = −ζ|an−ζ|2,
and |B(ζ)| = 1, therefore

(20) |B′(ζ)| =
∞∑

n=1

1− |an|2

|an − ζ|2
> 0.

Consequently, the local inverse theorem (see [1], p.132) can be applied at the
point ζ and we conclude that there is a neighborhood Vζ of ζ, Vζ ⊂
C − E ∪ A such that B maps Vζ conformally and topologically onto a
region Wζ . Therefore there is an analytic local inverse ϕζ : Wζ → Vζ of B.

Let ζ
(k)
n ∈ Γ(k)

n , where Γ(k)
n are the arcs defined in the previous section and

let V
ζ
(k)
n

, respectively W
ζ
(k)
n

be the corresponding neighborhoods. Then we
have:

(21) ϕ
ζ
(k)
n+j

◦B|
Γ

(m)
j

= Ψ(k)
n+j ◦ [Ψ(m)

j ]−1 = U (k)
n |

Γ
(m)
j

, m ∈ Z.

In other words, the function U
(k)
n has the analytic extension ϕ

(k)
ζn

◦ B in a

neighborhood of ζ
(k)
n . The set {Vζ : ζ ∈ K} represents an open covering of

K. Since K is a compact set, there is a finite covering {Vζ1 , Vζ2 , . . . , Vζp} such
that (21) is true on V = ∪p

j=1Vζj
and the theorem is completely proved. �
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5. INVARIANTS OF INFINITE BLASCHKE PRODUCTS IN P 2

It is known (see [3] and [4]) that Blaschke products can be defined also on the
real projective plan P 2. These are projections on P 2 of ordinary symmetric
Blaschke products in C . A model of P 2 is obtained by the factorization
C/ < h >, where < h > is the two element group generated by h. The
symmetry of B means that B commutes with the antianalytic involution
h(z) = −1/z. A Blaschke product in P 2 is then a mapping b : P 2 → P 2

defined by b(z̃) = B̃(z), where z̃ = {z, h(z)}. If ak is a zero of B, we’ll say
that ãk is a zero of b. If ζ is a cluster point of (an), we’ll say that ζ̃ is a
cluster point of (ãn). Let T = {z̃ ∈ P 2 : z ∈ ∂D}. Then we can prove the
following:

Theorem 7. Let b be an infinite Blaschke product in P 2 whose zeros have
a unique cluster point ζ̃ ∈ T. Then the set of continuous functions u : T → T

such that b ◦ u = b is an infinite cyclic group G̃ with respect to composition.

Proof. The Blaschke product b lifts to a unique analytic Blaschke product
B in C − {ζ} (see [2]). Let G be the group of invariants of B. For every

Uk ∈ G, let us define uk : T → T by uk(z̃) = Ũk(z). Then for every

z ∈ ∂D, b ◦uk(z̃) = b(Ũk(z)) = ˜B(Uk(z)) = B̃(z), which shows that uk ∈ G̃.
Vice-versa, given uk ∈ G̃, let us denote by Uk a lift of uk to ∂D, i.e.
a continuous function such that π ◦ Uk(z) = uk ◦ π(z) for every z ∈ ∂D.
Then π(B(Uk(z))) = b(π(Uk(z))) = b(uk(π(z))) = b(π(z)) = π(B(z)), for
every z ∈ ∂D, which means that B ◦ Uk = B, or b ◦ Uk ◦ h = B, in
other words Uk ∈ G, or Uk ◦ h ∈ G. By the previous section, it results
that for every compact arc K ⊂ ∂D such that ζ /∈ K, Uk or Uk ◦ h
has an analytic extension to a neighborhood of K. As only one of Uk or
Uk ◦ h can be analytic, the other being antianalytic, one and only one of the
relationships Uk ∈ G, Uk ◦ h ∈ G is true. Suppose that we have denoted
by Uk the analytic one, by an elementary reasoning it can be shown that
the relationship uk(z̃) = Ũk(z) is a group isomorphism and therefore G̃ is an
infinite cyclic group. �

Note. This paper was presented at the International Conference of Complex
Analysis held in Honor of Professor P. T. Mocanu.
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